Čech-to-derived functor spectral sequence - significado y definición. Qué es Čech-to-derived functor spectral sequence
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Čech-to-derived functor spectral sequence - definición


Čech-to-derived functor spectral sequence         
In algebraic topology, a branch of mathematics, the Čech-to-derived functor spectral sequence is a spectral sequence that relates Čech cohomology of a sheaf and sheaf cohomology.
Serre spectral sequence         
SPECTRAL SEQUENCE RELATING THE SINGULAR COHOMOLOGY OF THE TOTAL SPACE OF A SERRE FIBRATION IN TERMS OF THE COHOMOLOGIES OF THE BASE SPACE AND THE FIBER
Leray-Serre spectral sequence; Leray–Serre spectral sequence; Spectral sequence for the covering
In mathematics, the Serre spectral sequence (sometimes Leray–Serre spectral sequence to acknowledge earlier work of Jean Leray in the Leray spectral sequence) is an important tool in algebraic topology. It expresses, in the language of homological algebra, the singular (co)homology of the total space X of a (Serre) fibration in terms of the (co)homology of the base space B and the fiber F.
Spectral sequence         
  • Four pages of a cohomological spectral sequence
TOOL IN HOMOLOGICAL ALGEBRA
Spectrum sequence; Spectral sequences; Derived couple; Wang sequence; Edge map; Cohomological spectral sequence; Homological spectral sequence
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra.